International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)

Balapur P.O., Hyderabad – 500005, Telangana, India

Solar Hydrogen Generating Nanostructures Photocatalyst

Overview

Low cost and eco-friendly solar active photocatalytic material is highly desirable for generating hydrogen fuels. Nanostructured ferrite (Fe₂O₃, MFe₂O₄) and composite systems are potential candidates which gives high yield from water splitting. Titanates (TiO2) lack the ability to absorb the visible light photons and hence there is need to identify and develop efficient photocatalysts. Fe₂O₃ and II-VI metal chalcogenide (CdS, CdZnS) systems exhibit ability to absorb solar light photons as well as proper band energetics to split water molecule. They can be used in slurry type solar hydrogen generator.

Key Features

- Eco-friendly photocatalyst
- Rapid process to synthesize nanocrystalline photocatalyst
- Scalable process

Potential Applications

- Solar Hydrogen generator, Fuel gas-cooking, cutting, welding
- Optical material for absorber, photo-chromic display, optical sensor
- Photo-decomposition- Pollutant removal , water purification

Technology Readiness Level (TRL): 4

- Performance is validated at laboratory scale
- Improved efficiency

Microwave Irradiation 10 min.

Schematic of rapid photocatalyst synthesis produced by microwave sintering

Optical response of Visible light active photocatalysts

IPDI*	1	2	3	4	5	6	7	8	9	10
Activities	Basic concepts and understanding of underlying scientific principles	Short listing possible applications	Research to prove technical feasibility for targeted application	Coupon level testing in stimulated conditions	Check repeatability/ consistency at coupon level	Prototype testing in real-life conditions	Check repeatability/ consistency at prototype level	Reassessing feasibility (IP, competition technology, commercial)	Initiate technology transfer	Support in stabilizing production
Status										

*IPDI : Intellectual Property Development Indices

Major Patents / Publications

1. Dom, R., Kim H.G. and., **Borse, P.H**, Photo Chemical Hydrogen Generation from Orthorhombic CaFe₂O₄ Nanoparticles Synthesized by Different Methods , Chemistry Select 2017; 2 (8), 2556-2564

2. Dom, R, Chary, AS, Borse, PH. Solar hydrogen generation from spinel ZnFe₂O₄ photocatalyst: Effect of synthesis methods.

INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2015;39(10):1378-1390 3. **Borse** PH et.al.. Synthesis of a hydrogen producing nanocrystalline ZnFe₂O₄ visible light photocatalyst using a rapid microwave irradiation

method. RSC Advances 2012;2(33):12782-91

4. Borse PH, et al.. Fabrication of CaFe₂O₄/MgFe₂O₄ bulk heterojunction for enhanced visible light photocatalysis. Chemical Communications 2009(39):5889-91

Centre for Nano Materials

ARCI, Balapur PO., Hyderabad 500005, Telangana, India Tel : +91 9490447615,+91 40 24452457 / 24452454; Fax : +91 40 24442699 Email: phborse [at] arci [dot] res [dot] in / vijay [at] arci [dot] res [dot] in / tata [at] arci [dot] res [dot] in

